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The Bethe-Heitler cross section with arbitrary form factor is integrated over all photon angles/without 
approximation. The limit of this integrated cross section for large energies e of the initial and final electron 
is considered in detail. I t is shown that the contribution to this cross section from photons emitted in the 
direction of either the incoming or the outgoing electron gives the terms of order lne found by Schiff, but 
that the contribution from all other photon directions is of relative order 1, and we give explicit expres
sions for these terms, as well as a numerical evaluation for some typical cases, since for the energies of ex
perimental interest, viz., 30-1000 MeV, the logarithm is not very large: lne«4-8. Furthermore, keeping the 
terms of order 1 is of particular importance for electron scattering angles?? near 180°, since, as is shown, 
the terms in lne all have the factor cos2§#, which is not the case for the terms of order 1. I t is shown that 
all the formulas given are also valid for # equal or very close to 180°. 

I. INTRODUCTION 

IN the last few years, excitation of nuclei by inelastic 
electron scattering has become a very important 

tool for the study of nuclear spectroscopy,1 and, as new 
linear accelerators which will permit one to obtain very 
accurate data are becoming available, it becomes 
important to be able to analyze the data with the 
greatest possible precision. It is well known2 that one of 
the limitations in this analysis is the fact that scattered 
electrons can also lose energy by means of secondary 
processes. These are due to the following facts: First, 
nuclear scattering is always accompanied by emission 
of photons; second, since the target has a finite thick
ness (~ 1/100 of a radiation length), ionization or 
emission of a photon in the field of another nucleus 
may occur before or after the nuclear scattering. We 
would like to focus our attention on the first process 
only, as the other two are much easier to deal with, as 
can be seen in the literature.1,2 

In 1952 Schiff3 performed an integration of the Bethe-
Heitler cross section for bremsstrahlung4 in the Coulomb 
field of a point nucleus, assuming that the photon is 
emitted in the direction of either the incoming or the 
outgoing electron, and retaining only the terms of order 
lne, where e is the energy of the electron in units of 
mc2. 

In this paper we have performed the integration of 
the Bethe-Heitler cross section with arbitrary form 
factor (whether for the nucleus or for the atom) over 
all photon angles without making any approximations, 
after which we consider in detail the limit of this 
integrated cross section for large energies of the initial 
and final electron, e i ^ l , e2^>l. We show that the 
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contribution to this cross section from photons emitted 
in the direction of either the incoming or the outgoing 
electron gives the terms of order lne found by Schiff, 
but that the contribution from all other photon direc
tions is of relative order 1, and we give explicit 
expressions for these terms, as well as numerical 
examples for some typical cases, since for the energies 
of experimental interest, viz., 30-1000 MeV, the 
logarithm is not very large: lne~4-8. Furthermore, 
keeping the terms of order 1 is of particular im
portance for electron scattering angles # near 180°, 
since, as will be seen, the terms in lne all have the factor 
cos2J#, which is not the case for the terms of order 1. 
We wish to distinguish, in our discussion of the derived 
formulas, two aspects of its application to the experi
mental data: the radiative correction and the radiative 
tail. The radiative correction has to do with the emission 
and reabsorption of virtual photons and the emission 
of real soft photons, and involves an integration over 
photon energy. The radiative tail appears because of 
the emission of real hard photons, and is an extension 
of the scattering peak (elastic or inelastic), differential 
in the energy of the scattered electron. The problem of 
the radiative correction has been discussed extensively. 
(See, e.g., Ref. 5. This paper contains references to 
previous articles on the same subject.) We therefore 
consider here only the radiative tail. Nuclear recoil 
corrections are neglected in the calculation, but their 
order of magnitude is discussed at the end of the paper. 
We will treat the problem in first Born approximation 
throughout. The errors introduced thereby may be ex
pected to be of the same order of magnitude as those 
introduced by considering the same approximation in 
large angle Coulomb scattering, for which it has been 
noticed6 recently that the error is of order (Z/137)2sin|$, 

5 N. Meister and D. R. Yennie, Phys. Rev. 130, 1210 (1963). 
6 J. W. Motz has made a plot of the theoretical ratio of the first 

Born approximation to the exact cross section for elastic scattering 
of electrons in a pure Coulomb field (Mott scattering) for several 
values of the electron energy e, nuclear charge Z, and scattering 
angle # (private communication). We find that for €^>1, all the 
data for 30°<#<120° and 13<Z<79 can be fit by the simple 
expression <7Bom= (1 — 5)oexact, in which, to within 10%, 
8=(Z/137)2smi&=(Z/137)(Ap/p), p being the electron mo
mentum, Ap the momentum transfer. 
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where # is the scattering angle of the electron and Z the 
nuclear charge. This is clearly the most serious approxi
mation in the entire analysis, and is the next point 
that must be considered in any refinement of this work. 

II. INTEGRATION OF THE CROSS SECTION OVER 
PHOTON DIRECTIONS 

The Born approximation cross section for the scatter
ing of an electron of initial energy and momentum ei, 
pi, final energy and momentum e2, p2, and emission of 
a photon of energy and momentum k, k (the Bethe-
Heitler cross section) is 

1 e2/Z<?\2p2dk$2(q) 
da= J — J sin#&d#^jfc sin#d*W# 

(27I-)2fic\mc2/ pi k q* 

f Pi2 sin20i (4e2
2 - q2) pi s i n 2 0 2 (W- q2) 

X -+ 
I (ei—^icos0i)2 (e2—p2cos$2)

2 

2pip2 sinfli sin#2 cos(^i— ^2) (4eie2—g2+2&2) 

(ei—pi cosdi)(e2—p2 cos02) 

2^2(^1
2sin2i?1+^2

2sin26>2) 1 

(ei—pi cos0i) (€2—p2 cos02)' 
We assume here that we are dealing with scattering 
from a spherically symmetric static charge distribution, 
so that $(q), the nuclear form factor, is a function of 
the magnitude q of the momentum transfer to the 
nucleus, and not of its direction. For a deformed charge 
distribution, the form factor depends on the relative 
orientation of the charge deformation and the vector q. 
(See, e.g., Refs. 7 and 8.) Spin and polarization states 
of the final particles have been summed over, and the 
average over spin states of the initial electron has been 
taken. Here (di,<pi) and (02,<p2) are the polar and 
azimuthal angles of the initial and final electron, 
respectively, in a coordinate system with z axis along 
the direction of the photon k. Further, (#&,#&) and 
(#,$) are the polar and azimuthal angles of the photon 
and final electron, respectively, in a coordinate system 
with z axis along the direction of the initial electron pi. 
These angles are related by 

cos02= cost? cos#&+sin$ s i n ^ cos(<£—<j>k), (2) 

cost?=cos0i cos02+sin0i sin02 cos (cpi — <p2), 
and 

q = P i - p 2 — k , k=e1—e2. (3) 

The units of energy and momentum are mc2 and mc 
throughout. 

Since the emitted photon is not observed, we wish to 

7 U. Meyer-Berkhout, K. W. Ford, and A. E. S. Green, Ann. 
Phys. (N. Y.) 8, 119 (1956). 

8 Samuel Penner, Natl. Bur. Std. (U. S.) Internal Report 
May 2, 1962 (unpublished). 

integrate over the angles of the photon direction, #k 

and <£&. In view of the factor $2(q) in the cross section, 
the convenient variables for this integration are clearly 
&h and q2. Using (2) and (3) we express the cross section 
in terms of #&, q2, # and <j>. (In addition, we must 
multiply the cross section by two, since the entire range 
of q is covered by letting <£& go from 0 to 7r.) The inte
gration over d-k is "straightforward but tedious."9 The 
integration over q2 is not carried out explicitly at this 
point, so that we arrive now at the cross section for the 
scattering of the electron through an angle # : 

1 e2/Ze2\2p2dk r«M2 d(q2) 
da = ( ) $m&d&d<l>\ $2(q) 

27rfic\mc2/ pi k J qm* q* 

[ (2\+k2y<2 \Di^2 ZV / 2 / 

/ ^ 4 + 4 X 2 - V ( e 1
2 + € 2

2 - l ) - 1 6 e 1 € 2 \ 

\ 2\-q2 J 
(4€2

2-V) 
+2k [2A(X-&€2)- (\+kei)q22 

D^2 

(4€i2-<?2) 1 
- 2 * [2A(X+&€i)-(\-ke2)q22 . (4) 

X = € i € 2 - ^ 2 C 0 S ^ - 1 = K | P 1 - P 2 | 2 - ^ 2 ) , 

Di= {Pi(q2-q22)+2p2\0 cos&}2+4k2p2
2 sin2#, 

£ 2 = {p2(q
2-qi2)+2p1\0 cos#}2+4F£i2 sintf, 

qm= IPi—P2I - * = (2X+^ 2 ) 1 / 2 -^ , (5) 

<2M= | p i - P 2 | + * = (2X+^) ! / 2 +^ , 

qi=2p1sini&, 

X0=€i€2—pip2— 1 . 

Equation (4) will form the basis for our further consid
erations. We note at this point, however, that the in
tegrations performed in going from Eq. (1) to Eq. (4), in 
the course of which we have made no approximations, are 
also applicable to the scattering of an electron, with 
emission of a photon, in which the momentum transfer 
to the nucleus is "small," i.e., q<0(l). In this case we 
must replace $(q) byl—F(q), where F(q) is the atomic 
form factor. We note further that for the case of a pure 
Coulomb potential ($(g) = l, F(q) = 0), the integration 
over q2 may be performed explicitly, and was in fact 
first carried out by Racah.10 We give the result for this 

9 For details see L. C. Maximon, Natl. Bur. Std. (U. S.) Internal 
Report (unpublished). 

10 Giulio Racah, Nuovo Cimento 11,477 (1934). This calculation 
was repeated by McCormick, Keiffer, and Parzen [Phys. Rev. 
103, 29 (1956) J who correct several misprints in the original 
publication of Racah. Barber et at. [W. C. Barber, J. Goldemberg, 
G. A. Peterson, and Y. Torizuka, Nucl. Phys. 41, 461 (1963)] 
have used the high-energy limit of that formula to calculate the 
radiative tail. 
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case, presenting it in a somewhat more condensed form than that appearing elsewhere10: 

&2X+(2eie2-A)(X+l) 

Pi ' 

1 e^/Z^Pidk f k 
Ar= 1 — ) sintW&&£ j 2-

2ir hc\mc2/ pi k l 
ln{X+l+CX(X+2)]^} 

X2^: 

X2[X(X+2)]1'2 

j -2ketft+3e,(.6l+td - (pl2+p22)+ (26l€2-X) («l€2+£2
2) 

k r 2€2/>i2sin2#(2ei£2
2-3£e2

2) 

X2 

k r 2eipi sin2!?(2e2/>i2+3^ei2)n 

ln(e2+/>2) 

2^€1#1
2+3€1(€1+€2)-(^1

2+^22)+(2€1€2-X)(61e2+^1
2) + 

X2 
ln(€i+fc) 

2£2sin2# £2 

-C2^1V2
2(€1

2+c2
2-e162)+3*2(€1+€2)

2]+ [(^i2+^2
2)(€ie2+l) 

X^i2£2
2 \2pi2pr 

2 
•(2€1€2-X)(^1

2+^2
2+€1€2+l)-3(€1+€2)2] [2€i€2-X] 

X2 

III. HIGH-ENERGY LIMIT OF THE CROSS SECTION 

We now return to Eq. (4) and perform the high-
energy approximations pertinent to the experiments 
we are considering, viz., e£M, €%%>1. In addition, we 
assume throughout all but the last section of the paper 
that sin# is of order 1, by which we mean 
l/(e sin#)2<3Cl, i.e., that d- is not very close to either 0 
or 7r. At the end of the paper the case in which # is close 
to or equal to 7r, (T—#<0(l/e)), is discussed, and it is 
shown that all of the formulas derived for sin$ of order 
one remain equally valid for w—^<0(l/e). With these 
assumptions we have, from the expressions (5), 

Dx~e1
2(q2-q2

2)2+4:k2€22 sin2#, 

P 2 ~ €2
2(g2-gi2)2+4^2€1

2 sin¥, 

X«2ei€2sin2§#. 
(7) 

Thus, since q2 is, throughout the range of integration, 
of order e2, D\ and D% will be of order e6, except near 
the points q2=qi (for Pi) and q2=qi2 (for D2), at which 
points they are much smaller, of order €4. Thus at these 
points the integrand in expression (4) will be sharply 
peaked; a simple calculation shows that for sin# of 
order unity, qm<q2<qi<qM, i.e., the peaks lie within 
the range of integration in expression (4). 

We now consider in detail the expression in curly 
brackets in the cross section (4), the various terms of 
which are shown in Fig. 1. We note first that the terms 
with factor Drlf2 or Drm have peaks of the same 
height and width as do the terms with the factor Dr*/2 

or P2~
8/2. Thus, all the peaked terms should be expected 

to give contributions of equal order of magnitude to 
the cross section. Further, we note that, for the terms 
with the factor Drd/2 or D2~

3/2, the ratio of the height 
of the peaks to that of the background is of order €3, 
whereas the ratio of the width of the peaks to that of 
the total integration region is of order 1/e. Thus, for 
these terms the background gives a negligible contri
bution, of order 1/e2 relative to that of the peaks, and 

• (6) 

may be neglected. This is not the case, however, for the 
terms with factor Dr1/2 or Z>2~

1/2. For these terms the 
ratio of peak height to that of the background is only of 
order €, while the ratio of the width of the peaks to the 
total integration region is of order 1/e, as before. 
Thus the contribution of the background may be 
expected to be of the same order of magnitude as that 
of the peaks for these terms. Finally, the one term 
without any peaked factor, denoted by D° in Fig. 1, is 
of the same order of magnitude as are the terms with 
factor Pi~1/2 or Z>2~

1/2 in the background region, and 
hence must also be kept. These order of magnitude 
considerations are indeed borne out in the explicit 
evaluations which follow, except in that the contri
bution from the peaks of the terms with factor Drm or 
Z>2"~

1/2 are actually of order Ine relative to the other 
contributions we have mentioned, i.e., these order of 
magnitude considerations do not distinguish between 
lne and 1, but only between different powers of e. 
Noting, however, that even for €= 103 we have lne=6.9, 

A 
r 

D ~ * t«rm* 

D"2* farms 

0« Urm 

<*m qj ? = 0(€2) 

FIG. 1. Relative order of magnitude representation of the various 
terms in the integrand of cross section (4). For detailed explana
tion see text. 
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we keep, throughout, terms of relative order one as 
well as those of order lne, neglecting only terms of 
relative order 1/e2. 

We now separate the contribution of the peaks from 
that of the background, writing explicit expressions for 
each of these contributions. Consider the terms with 
factor Z>i~1/2 or D2~~112 first. We have, then, integrals of 
the form 

rxM f(x)dx 
1= / — , (8) 

in similar fashion. We now have integrals of the form 

*XM f(x)dx r 
J Xm Z(x-Xo)2+v2J12 

which we write in the form 

dx 

(12) 

/= / («o) 
rxM 

Z(x-Xo)2+v2J12 

where 

and 

0Cm<Xo<XM 

rxM 

+ 

J Xm 

f(x)-f(x0) 

[(tf-*o)2+f]3 /2 
•dx. ( 1 3 ) 

(9) 
0<7I<KXM—XQ, 0<7i<£x0—xn 

We write 

rxM dx 

Kx-xoY+v2!112 

V. 
xM f(x)-f(xo) 

l(x-Xo)2+v2J12 
dx. (10) 

The explicit evaluation of the first integral, with 
neglect, as before, of terms of relative order 1/e2, gives 
2/V, i.e., a contribution of order e2 relative to that of 
the second integral, as previously indicated. Thus we 
obtain 

2 
/ = - / ( * , ) • (14) 

V2 

Using the expressions for qm and qM in Eqs. (5) and 
Eqs. (7)-(14), we find, for the high-energy limit of 
expression (4), 

The first integral on the right-hand side of (10) is the 
contribution from the peak at x= x0, the second integral 
is the background contribution. In evaluating the first 
integral we neglect terms of relative order TJ2/(XM—#o)2 

and rj2/(x0— xm)2, which are, for sin# of order one, of 
order 1/e2 for the integrals in expression (4). In the 
second integral there is no singularity at x=Xo and 
hence we may set i? = 0, again introducing errors of 
relative order 1/e2. Thus we obtain 

1 e2 / Ze\2 dk sioMM4> 
da= ( ) — — {P+B}, 

2<whc\mc2/ k ex
2 

Here the contribution P from the peaks, is 

cos2|#f (€X
2+e2

2) 
P= *2(?2) ln(2€l) 

H 

(15) 

sin4i# I 2e2
2 

/=/(*o) ml J 

J X 

XM f(x)-f(x0) 

\x— Xc\ 
-dx. (11) 

(ei2+e2
2) e i 

+ff2(?i) ln(262)-ff2(52)— 
2«i2 2e2 

«2 

26! J 
(16) 

For the terms with factor D{~z/2 or D2~
z/2 we proceed 

and the contribution from the background B is found, 
after some algebraic juggling, to be 

rQM c^z eie2 r*? 
B = k / Le1G1(q)-e2G2(q)']a(q)d(q2)-k / lelGl{q)-e2G2{q)-]a(q)d(q2)+— / [ G i ( ? ) - G 2 ( ? ) > ( < ? W ) 

J Ql2 Jqm* 2\Jq2* 

+—$2(q1)[ke£k2 cos2J#-e2(ei+e2) sin2 |^]+2e1e2[^2+2e1e2 cos2§#] In s in^+2e 2
2 [e i 2+e 2

2 c o s 2 ^ ] In— 
X2 I e2J 

+^2fe) -ke£k2 cos2^-€i(€i+€2) sin2^]+2e1e2[^2+2€ie2 cos2i#] In sinj^+2e1
2[e2

2+ei2 cos2J#] In-
€2 

exJ 

2^eie2 C«M* d(q2) 2k2e1e2 

• / {l-*2(<?)}— — , (17) 
(2\+k2y2Jqw (f X2 
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where 

•Gi , 2 (g) = 
<f—qi,22 

4 X 2 + ^ ~ V(ei 2 +€ 2
2 ) 

b(q)=> , a(q) = 

X=2€i€2sin2 |^ 

b(q) 
(18) 

2X-g2 

We have written the integrals in B in such a way that they vanish for &(q) = l9 and that the lack of a singularity in 
the integrand at g2=2X«g1g2, (<?22<2\<gi2), is clear. 

IV. DISCUSSION OF THE FORMULAS 

It is worth noting, from Eqs. (16) and (17), that the terms in P are of order lne and order 1, and that, as our 
order of magnitude considerations showed, those in B are all of order 1 since we consider ei/c2, the argument of 
the logarithm in By to be of order 1. However, these terms will add to those in P and hence change the argument 
of the logarithmic terms in P. Thus, if one retains only the contribution from the peaks, the coefficients of terms 
in lne are given correctly, but not the argument of the logarithm. For example, for the case 9:(g) = l we have 
G1(q) = G2(q) = 0(md 

P=-

B--

(€i2+e2
2) eos2f# 

2ei2€2
2 sin4 |# 

1 

[€ l
2ln(2€1)+€22ln(2€2)~e1c2], 

ife2(€1
2+62

2)(sin2^-cos2|^)+4€ie2[ife2+2€1€2cos2§#] lnsin |^~2(€1
4~€2

4) cos2f#ln— 
4€i2c2

2 sin4§# I € 2 J 

and substituting these in Eq. (15) we find the cross section for the case of a point charge: 

1 e2/Ze\2dksin#d&d<l>l(e1
2+e22) cos2§# (€i2+e2

2) c o s 2 ^ &2+2eie2 cos2i# 
d<r= ( J ln(2e2) 1 ln(2ei) 1 In s in |# 

(19) 

2ir fic\mc2/ k 2e2
2 sin4 |# 2ei2 sin4§# 

(ei2+62
2) 

4 € i V sin4 |# 

€i€2 sin4§# 

p 2 s in 2 §#- (€l
2+€2

2) cos2i#] (20) 

Comparing the logarithmic terms in Eq. (20) with those 
in Eq. (16), we note that the result of adding the 
background terms has been the interchange of the 
arguments of these terms, for the case $(q)=l. The 
fact that Eq. (20) may be obtained directly by taking 
the high energy limit of Eq. (6) provides a check on 
these calculations. 

The idea employed in the evaluation of the high-
energy limit of the cross section, namely the separation 
of the contribution of the peaks from the background 
contribution in the integral over the momentum 
transfer, has been described clearly by SchifL3 He 
notes that the differential cross section will have peaks 
when the photon is emitted very nearly in the direction 
of either the incident or final electron. That these two 
cases correspond, respectively, to our peaks at <f=qi 
and g2 = #i2 may be seen quite simply: If k is in the 
direction of pi, then pi—k=(pi—k)pi^p2pi and 
q=Pi—P2—k*xp2(pi~p2), so that g2«4^2

2sin2 |^=g2
2 . 

If k is in the direction of p2,then p 2 + k = (p2+k)$2~pip2 
and q=pi—p2—k«^i(^i—^2),so thatg2«4^i2 sin2!#=gi2. 

Schiff, however, keeps only the contributions of 
relative order lne, as he states explicitly, and these 

come, as we have seen, only from the peaks. He has 
done the calculation with 3r(g) = l , but it is very easy, 
following his derivation, to introduce the factors CF(gi) 
and SF(g2) which appear in expression (15), and this is in 
fact what is done by experimentalists2'11 using his 
formula. Thus we conclude that the results of Schiff 
are valid to the approximation which he claims, 
namely, keeping only the contribution of order lne. 
The principal difference between our high-energy cross 
section and that of Schiff is thus that he neglects terms 
of relative order 1/lne, whereas we neglect only terms 
of order 1/e2. We see, moreover, that to achieve this 
we must keep contributions from the background as 
well as from the peaks. We may note that for the case 
3 : (g)=l , one can obtain Schiff's result directly from 
the high energy approximation to Racah's10 cross 
section, expression (17). However, without Schiff's 
analysis of the peaks, it would not be clear how to 
generalize to the case $(q)5*l. 

The corrections to the Bethe-Heitler differential cross 
section due to the recoil of the nucleus, of charge Z and 

11 J. I. Friedman, Phys. Rev. 116, 1257 (1959). 
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201-INCIDENT ELECTRON ENERGY 100 MeV 

" 3 0 s 60s 90s 120* 150° 
SCATTERING ANGLE *> 

FIG. 2. The ratio ( P + £ ) / P i as a function of the scattering 
angle for different values of a=k/eh and for 100-MeV incident 
electron energy, Pi being the sum of the logarithmic terms in P 
[the first two terms in Eq. (16)] and representing the terms 
calculated by Schiff. 

mass M, have been calculated by Drell.12 He shows that 
there are kinematic correction terms of order qtn/M 
which modify the peaked terms (of order lne), and 
dynamic corrections (due to emission of the brems-
strahlung gamma ray by the nucleus) of order Zqm/M. 
These latter terms do not, however, correlate strongly 
the direction of the emitted photon with the direction 
of the incident or final electron, and hence have a 
factor of order 1 only, as we have shown. Thus, 
relative to the cross section we have computed, the 
kinematic corrections are estimated to be of order 
etn/M for large scattering angles, whereas the dynamic 
corrections should be of relative order (e/lne) (Zm/M). 
We note that this last term is roughly independent of Z. 
Since these corrections are, for the energies of experi-

30° 60° 90° 120° 
SCATTERING ANGLE t> 

FIG. 3. The ratio (P+B)/Pi as a function of the scattering 
angle for different values of a^k/eh and for 200-MeV incident 
electron energy, Pi being the sum of the logarithmic terms in P 
[the first two terms in Eq. (16)]] and representing the terms 
calculated by Schiff. 

mental interest (30-1000 MeV), smaller than those 
introduced by using the Born approximation, we do not 
include them in this calculation. 

To show the importance of the corrections due to the 
fact that we have done the integrations taking into 
account the contribution from the background as well 
as from the peaks, we have plotted in Figs. 2 and 3 
the ratio of the complete expression, P+B [Eqs. (16) 
and (17)], to the sum of the logarithmic terms in P 
[the first two terms in Eq. (16)], which are the ones 
given by SchirFs calculation. We have done this for 
the case of oxygen 16 using for the form factor the 
expression which gives the best experimental fit7-13: 

SF(g)= (1-2.58X10-V) exp(-5.55X10-y), (18) 

where q is expressed in mc units. The ratio has been 
calculated for two different primary electron energies, 
100 and 200 MeV, and for several values of the energy 
loss k as a function of the scattering angle. In Figs. 4 
and 5, also using the form factor given in (18), we plot 
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ENERGY OF SCATTERED ELECTRONS IN MeV 

FIG. 4. The cross section calculated from Eq. (15) (this calcu
lation) and the cross section calculated by including only the 
logarithmic terms in P (Schifl calculation) for incident electron 
energy 100 MeV and scattering angle 60°. 

the cross section as given by Eq. (15) as well as the one 
obtained by including only the logarithmic terms in P 
[the first two terms in Eq. (16)], as a function of the 
final electron energy for fixed initial energy and fixed 
scattering angle. 

V. THE CASE OF 180° SCATTERING ANGLE 

Finally, we consider the case in which the scattering 
angle # is very close or equal to 180°: ir—#~sin# 
<0( l /e ) . We will see at the end of our considerations 
that in fact all of the high-energy formulas [in particular 
expressions (15)-(20)] derived for large sin#£l/(€ sin#)2 

« 1 ] are equally valid for # very close or equal to 180°. 
However, many of the statements leading to these 
formulas must be modified. We return, therefore, to the 
exact Born approximation cross section given by Eqs. 
(4) and (5), where we observe, from the expressions for 
Di and D2, that the peaks actually occur at q^2 

12 S. D. Drell, Phys. Rev. 87, 753 (1952). « F. Lacoste and G. R. Bishop, Nucl. Phys. 26, 511 (1961). 
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ENERGY OF SCATTERED ELECTRONS IN MeV 

FIG. 5. The cross section calculated from Eq. (15) (this calcu
lation) and the cross section calculated by including only the 
logarithmic terms in P (Schiff calculation) for incident electron 
energy 100 MeV and scattering angle 160°. 

= q2
2-2(p2/pi)\ocost? and qi2=qi2-2(pi/p2)^ocos#, 

i.e., they are displaced by quantities of order 1 from 
q2

2 and qi2 (which are of order e2). More significant is 
the fact that as s i n # - ^ 0 , the peak width, of order 
&sin#, goes to zero, and the peak height becomes 
infinite. However, from Eqs. (5) we find that as # 
approaches TT, the end points of the integration region, 
qm

2 and qM
2, move in toward the peaks at q2'

2 and g/2, 
and that for ir-d- of order 1/e we find 

q2f2-qm2~ ( ^ € 2 2 / ( 6 l + € 2 ) ) [ s i n ^ - (6 1 +6 2 ) 2 / (6 1 6 2 ) ]==0( l ) 

and 

qM2~qi2 

«(^€ 1
2 / ( € i+€ 2 ) ) [ s in^ - ( e i+e 2 ) 2 / ( ^2 ) ] = 0 ( l ) . 

Thus, for s in^<(e 1 +€ 2 ) / (6 i e 2 ) -0 ( l / e ) , the peaks at 
q2'

2 and q%2 lie outside the integration region. 
We now reconsider the expression in curly brackets 

in the cross section (4) for v-&<0(l/e). The back
ground terms are unaffected by the order of magnitude 
of sin#. Thus, as shown in Fig. 1, the background 
height is of order one for the terms with factors Dr1/2, 
D2~

1/2 or Z>°, and must be kept. Terms with factor 
Drzl2 or Z>2~3/2 have background height of order 1/e2 

and may be neglected. However, the width of the peak 
within the integration region is, for TT—#<0(l /e) , of 
order one rather than of order e, and the peak height 
(taken at the limits of the integration region if the 
peaks lie outside these limits) is of order 1 rather than 
of order e as before, because of the factors of £>r1/2, 
£>2~

1/2, Drm and Z>2"
3/2. Thus, the contribution from 

the peaks is now of order 1/e2 relative to the background, 
and may be neglected. The important point is that 
although the contribution from the peaks is smaller for 
TT—^<0(l /e) than for s i n # = 0 ( l ) by a factor of order 
1/e2, The contribution from the background is of the 

same order of magnitude for both cases, and that, our 
calculation having already included the background 
contribution, it thus remains valid for both cases. The 
background terms may now be simplified as was done 
before in going from Eq. (10) to Eq. (11), where we 
neglected the tf in the denominator of the integrand, 
with error of relative order 1/e2. With similar error we 
may now replace g2'

2 and q{2 by q2
2 and qi2, respectively, 

since we noted that q2
2-q2

2=0(\), qi'2-qi2=0(l). 
Thus, for sin#>(ei+e2)/(eie2) , we arrive at precisely 
those background terms given in expression (17). For 
sin#<(ei+€2)/(eie2), i.e., qm

2>q2
2 and qM

2<qi2, the 
first two integrals in Eq. (17) do not appear, and the 
third integral should be modified so that the limits of 
integration are qj and qM

2- However, in this case the 
first two integrals are in fact of order 1/e2 relative to B 
itself and the change of limits on the third integral 
would again introduce errors of order 1/e2 relative to B. 
Thus we can in fact leave the expression (17) for B just 
as it stands. Likewise, expression (16) for the peak terms 
may be left without modification, since it is manifestly 
of order 1/e2 relative to B for v-&<0(l/e). Equations 
(15)-(20) thus need no modification for the case in 
which 7 r - # < 0 ( l / e ) . 

We may mention that a calculation of the cross 
section for high-energy bremsstrahlung in electron-
proton collisions, integrated over the directions of the 
final proton and photon, has been performed by Berg 
and Lindner.14 However, in their calculation the inte
gration is carried out numerically for specific values of 
the energies and scattering angle and a particular form 
factor, so that the errors involved in the Schiff approxi
mation are not investigated. Our goal here is a general 
discussion of the approximations involved in the 
calculation of Schiff. 

After completion of this work, it was brought to our 
attention that the general problem of the radiation tail 
has been considered recently by another author,15 but 
both the techniques and the goals of his calculation 
differ from ours. 
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